3.209 \(\int \frac{x^4 \left (c+d x^2\right )^2}{a+b x^2} \, dx\)

Optimal. Leaf size=105 \[ \frac{a^{3/2} (b c-a d)^2 \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{b^{9/2}}-\frac{a x (b c-a d)^2}{b^4}+\frac{x^3 (b c-a d)^2}{3 b^3}+\frac{d x^5 (2 b c-a d)}{5 b^2}+\frac{d^2 x^7}{7 b} \]

[Out]

-((a*(b*c - a*d)^2*x)/b^4) + ((b*c - a*d)^2*x^3)/(3*b^3) + (d*(2*b*c - a*d)*x^5)
/(5*b^2) + (d^2*x^7)/(7*b) + (a^(3/2)*(b*c - a*d)^2*ArcTan[(Sqrt[b]*x)/Sqrt[a]])
/b^(9/2)

_______________________________________________________________________________________

Rubi [A]  time = 0.165961, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091 \[ \frac{a^{3/2} (b c-a d)^2 \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{b^{9/2}}-\frac{a x (b c-a d)^2}{b^4}+\frac{x^3 (b c-a d)^2}{3 b^3}+\frac{d x^5 (2 b c-a d)}{5 b^2}+\frac{d^2 x^7}{7 b} \]

Antiderivative was successfully verified.

[In]  Int[(x^4*(c + d*x^2)^2)/(a + b*x^2),x]

[Out]

-((a*(b*c - a*d)^2*x)/b^4) + ((b*c - a*d)^2*x^3)/(3*b^3) + (d*(2*b*c - a*d)*x^5)
/(5*b^2) + (d^2*x^7)/(7*b) + (a^(3/2)*(b*c - a*d)^2*ArcTan[(Sqrt[b]*x)/Sqrt[a]])
/b^(9/2)

_______________________________________________________________________________________

Rubi in Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \frac{a^{\frac{3}{2}} \left (a d - b c\right )^{2} \operatorname{atan}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{b^{\frac{9}{2}}} + \frac{d^{2} x^{7}}{7 b} - \frac{d x^{5} \left (a d - 2 b c\right )}{5 b^{2}} + \frac{x^{3} \left (a d - b c\right )^{2}}{3 b^{3}} - \frac{\left (a d - b c\right )^{2} \int a\, dx}{b^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**4*(d*x**2+c)**2/(b*x**2+a),x)

[Out]

a**(3/2)*(a*d - b*c)**2*atan(sqrt(b)*x/sqrt(a))/b**(9/2) + d**2*x**7/(7*b) - d*x
**5*(a*d - 2*b*c)/(5*b**2) + x**3*(a*d - b*c)**2/(3*b**3) - (a*d - b*c)**2*Integ
ral(a, x)/b**4

_______________________________________________________________________________________

Mathematica [A]  time = 0.199298, size = 105, normalized size = 1. \[ \frac{a^{3/2} (a d-b c)^2 \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{b^{9/2}}-\frac{a x (a d-b c)^2}{b^4}+\frac{x^3 (b c-a d)^2}{3 b^3}+\frac{d x^5 (2 b c-a d)}{5 b^2}+\frac{d^2 x^7}{7 b} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^4*(c + d*x^2)^2)/(a + b*x^2),x]

[Out]

-((a*(-(b*c) + a*d)^2*x)/b^4) + ((b*c - a*d)^2*x^3)/(3*b^3) + (d*(2*b*c - a*d)*x
^5)/(5*b^2) + (d^2*x^7)/(7*b) + (a^(3/2)*(-(b*c) + a*d)^2*ArcTan[(Sqrt[b]*x)/Sqr
t[a]])/b^(9/2)

_______________________________________________________________________________________

Maple [A]  time = 0.004, size = 176, normalized size = 1.7 \[{\frac{{d}^{2}{x}^{7}}{7\,b}}-{\frac{{x}^{5}a{d}^{2}}{5\,{b}^{2}}}+{\frac{2\,{x}^{5}cd}{5\,b}}+{\frac{{x}^{3}{a}^{2}{d}^{2}}{3\,{b}^{3}}}-{\frac{2\,{x}^{3}acd}{3\,{b}^{2}}}+{\frac{{x}^{3}{c}^{2}}{3\,b}}-{\frac{{a}^{3}{d}^{2}x}{{b}^{4}}}+2\,{\frac{x{a}^{2}cd}{{b}^{3}}}-{\frac{a{c}^{2}x}{{b}^{2}}}+{\frac{{a}^{4}{d}^{2}}{{b}^{4}}\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}-2\,{\frac{{a}^{3}cd}{{b}^{3}\sqrt{ab}}\arctan \left ({\frac{bx}{\sqrt{ab}}} \right ) }+{\frac{{a}^{2}{c}^{2}}{{b}^{2}}\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^4*(d*x^2+c)^2/(b*x^2+a),x)

[Out]

1/7*d^2*x^7/b-1/5/b^2*x^5*a*d^2+2/5/b*x^5*c*d+1/3/b^3*x^3*a^2*d^2-2/3/b^2*x^3*a*
c*d+1/3/b*x^3*c^2-1/b^4*a^3*d^2*x+2/b^3*a^2*c*d*x-1/b^2*a*c^2*x+a^4/b^4/(a*b)^(1
/2)*arctan(x*b/(a*b)^(1/2))*d^2-2*a^3/b^3/(a*b)^(1/2)*arctan(x*b/(a*b)^(1/2))*c*
d+a^2/b^2/(a*b)^(1/2)*arctan(x*b/(a*b)^(1/2))*c^2

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x^2 + c)^2*x^4/(b*x^2 + a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.248449, size = 1, normalized size = 0.01 \[ \left [\frac{30 \, b^{3} d^{2} x^{7} + 42 \,{\left (2 \, b^{3} c d - a b^{2} d^{2}\right )} x^{5} + 70 \,{\left (b^{3} c^{2} - 2 \, a b^{2} c d + a^{2} b d^{2}\right )} x^{3} + 105 \,{\left (a b^{2} c^{2} - 2 \, a^{2} b c d + a^{3} d^{2}\right )} \sqrt{-\frac{a}{b}} \log \left (\frac{b x^{2} + 2 \, b x \sqrt{-\frac{a}{b}} - a}{b x^{2} + a}\right ) - 210 \,{\left (a b^{2} c^{2} - 2 \, a^{2} b c d + a^{3} d^{2}\right )} x}{210 \, b^{4}}, \frac{15 \, b^{3} d^{2} x^{7} + 21 \,{\left (2 \, b^{3} c d - a b^{2} d^{2}\right )} x^{5} + 35 \,{\left (b^{3} c^{2} - 2 \, a b^{2} c d + a^{2} b d^{2}\right )} x^{3} + 105 \,{\left (a b^{2} c^{2} - 2 \, a^{2} b c d + a^{3} d^{2}\right )} \sqrt{\frac{a}{b}} \arctan \left (\frac{x}{\sqrt{\frac{a}{b}}}\right ) - 105 \,{\left (a b^{2} c^{2} - 2 \, a^{2} b c d + a^{3} d^{2}\right )} x}{105 \, b^{4}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x^2 + c)^2*x^4/(b*x^2 + a),x, algorithm="fricas")

[Out]

[1/210*(30*b^3*d^2*x^7 + 42*(2*b^3*c*d - a*b^2*d^2)*x^5 + 70*(b^3*c^2 - 2*a*b^2*
c*d + a^2*b*d^2)*x^3 + 105*(a*b^2*c^2 - 2*a^2*b*c*d + a^3*d^2)*sqrt(-a/b)*log((b
*x^2 + 2*b*x*sqrt(-a/b) - a)/(b*x^2 + a)) - 210*(a*b^2*c^2 - 2*a^2*b*c*d + a^3*d
^2)*x)/b^4, 1/105*(15*b^3*d^2*x^7 + 21*(2*b^3*c*d - a*b^2*d^2)*x^5 + 35*(b^3*c^2
 - 2*a*b^2*c*d + a^2*b*d^2)*x^3 + 105*(a*b^2*c^2 - 2*a^2*b*c*d + a^3*d^2)*sqrt(a
/b)*arctan(x/sqrt(a/b)) - 105*(a*b^2*c^2 - 2*a^2*b*c*d + a^3*d^2)*x)/b^4]

_______________________________________________________________________________________

Sympy [A]  time = 2.50455, size = 240, normalized size = 2.29 \[ - \frac{\sqrt{- \frac{a^{3}}{b^{9}}} \left (a d - b c\right )^{2} \log{\left (- \frac{b^{4} \sqrt{- \frac{a^{3}}{b^{9}}} \left (a d - b c\right )^{2}}{a^{3} d^{2} - 2 a^{2} b c d + a b^{2} c^{2}} + x \right )}}{2} + \frac{\sqrt{- \frac{a^{3}}{b^{9}}} \left (a d - b c\right )^{2} \log{\left (\frac{b^{4} \sqrt{- \frac{a^{3}}{b^{9}}} \left (a d - b c\right )^{2}}{a^{3} d^{2} - 2 a^{2} b c d + a b^{2} c^{2}} + x \right )}}{2} + \frac{d^{2} x^{7}}{7 b} - \frac{x^{5} \left (a d^{2} - 2 b c d\right )}{5 b^{2}} + \frac{x^{3} \left (a^{2} d^{2} - 2 a b c d + b^{2} c^{2}\right )}{3 b^{3}} - \frac{x \left (a^{3} d^{2} - 2 a^{2} b c d + a b^{2} c^{2}\right )}{b^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**4*(d*x**2+c)**2/(b*x**2+a),x)

[Out]

-sqrt(-a**3/b**9)*(a*d - b*c)**2*log(-b**4*sqrt(-a**3/b**9)*(a*d - b*c)**2/(a**3
*d**2 - 2*a**2*b*c*d + a*b**2*c**2) + x)/2 + sqrt(-a**3/b**9)*(a*d - b*c)**2*log
(b**4*sqrt(-a**3/b**9)*(a*d - b*c)**2/(a**3*d**2 - 2*a**2*b*c*d + a*b**2*c**2) +
 x)/2 + d**2*x**7/(7*b) - x**5*(a*d**2 - 2*b*c*d)/(5*b**2) + x**3*(a**2*d**2 - 2
*a*b*c*d + b**2*c**2)/(3*b**3) - x*(a**3*d**2 - 2*a**2*b*c*d + a*b**2*c**2)/b**4

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.234725, size = 207, normalized size = 1.97 \[ \frac{{\left (a^{2} b^{2} c^{2} - 2 \, a^{3} b c d + a^{4} d^{2}\right )} \arctan \left (\frac{b x}{\sqrt{a b}}\right )}{\sqrt{a b} b^{4}} + \frac{15 \, b^{6} d^{2} x^{7} + 42 \, b^{6} c d x^{5} - 21 \, a b^{5} d^{2} x^{5} + 35 \, b^{6} c^{2} x^{3} - 70 \, a b^{5} c d x^{3} + 35 \, a^{2} b^{4} d^{2} x^{3} - 105 \, a b^{5} c^{2} x + 210 \, a^{2} b^{4} c d x - 105 \, a^{3} b^{3} d^{2} x}{105 \, b^{7}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x^2 + c)^2*x^4/(b*x^2 + a),x, algorithm="giac")

[Out]

(a^2*b^2*c^2 - 2*a^3*b*c*d + a^4*d^2)*arctan(b*x/sqrt(a*b))/(sqrt(a*b)*b^4) + 1/
105*(15*b^6*d^2*x^7 + 42*b^6*c*d*x^5 - 21*a*b^5*d^2*x^5 + 35*b^6*c^2*x^3 - 70*a*
b^5*c*d*x^3 + 35*a^2*b^4*d^2*x^3 - 105*a*b^5*c^2*x + 210*a^2*b^4*c*d*x - 105*a^3
*b^3*d^2*x)/b^7